
Building a chemical library

Generating new molecules

To generate  new molecules  using genetic  algorithms,  we have used a  package called Data
Warrior.  Data Warrior was used because it is an open source easy-to-use platform for generating new
molecules based on the scaffolds provided. In addition to the creation of compound libraries, Data
Warrior can be used to calculate physiochemical properties, create graphs, and visualize data. We used
the  genetic  algorithm  functionality  of  Data  Warrior  to  generate  compounds  that  were  similar  in
structure to the starting 16 scaffolds. 

Briefly, the genetic algorithm of Data Warrior works in the following way: (a) Input a user
provided structure of a molecule called scaffold; (b) Mutate it randomly by changing fragments on the
molecule and select the structures that are most similar to the original structure; (c) Generate a pre-
specified number of children for every scaffold; (d) Select the most structurally similar molecules from
the population. These molecules become the starting structures for the next generation. The above steps
are repeated till we have a desired number of generations. While Data Warrior is a powerful tool to
rapidly generate a large number of molecules (~105), it is inflexible in the sense that it does not allow
us to choose a different selection criterion than structural similarity. We used Data Warrior to generate
400 generations, 32 children selected per generation out of 4096 per generation. The algorithm selected
the 32 molecules most similar to the parent generation. Since we wanted to generate compounds that
were more druglike, we selected the compounds that had a high drug score and performed a second
round of generation of new molecules. This gave us 12800 compounds per scaffold.       

Drug Score is a numerical score given to a molecule to predict  how good are its drug-like
characteristics. Drug Score is based on the statistics of how frequently the fragments that comprise the
molecule appear in known drugs. In addition, Drug Score considers desirable physical properties, such
as solubility, molecular weight etc.

Post-Processing

 Druglikeness. The Lipinski rules, from which the expression for drug score derived, states that
druglike compounds are more likely to have molecular weight less than 500,  lipophilicity less than 5,
less than 5 hydrogen bond donors, less than 10 hydrogen bond acceptors, molar refractivity should be
between 40-130). So, by selecting the molecules which have a high druglikeness (> 0.9) we generated
more molecules. This resulted in a larger number of compounds with scores greater than 0.9. We also
found that  the higher  the drug score,  the  more  likely  a  compound would not  contain problematic
functional groups.

PAINS.   After  generating  a  population  of  molecules,  we  screened  them  for  Pan  Assay
Interference Compounds (PAINS). PAINS are problematic functional groups that are false positives in
bioassays in the sense that they appear to be strong binders to a protein targets, but really are not very
selective in their binding. The PAINS screen used in this work is the NIH filter in RDKit. For a review
of PAINS kindly see (Baell and Walters 2014). We found that 82 percent of marketed drugs did not
contain PAINS as  defined by the NIH filter.  In addition,  we also screened for the fraction of  sp3

hybridized carbons since a ratio of greater than .47 is associated with more selective binding (Baell and
Walters, 2014). We found that 48 percent of FDA approved drugs have fraction of sp3 hybridized
carbons fsp3 > 0.47 and 65% have scores greater than 0.36. Compounds with a higher fSP3 ratio were



more complex and did not contain as many double bonds (Baell and Walters, 2014). We found that by
adding an additional carbon or two this would improve this ratio for those scaffolds which had double
bonds located in their 5 membered ring. In total, we had 4 scaffolds with double bonds, and 4 without.
Since  according  to  Drugbank  drugs  like  cysteine,  methimazole,  cysteamine,  azathioprine,  and
mercaptopurine  that  have  anti-inflammatory  properties  also  contain  a  sulfhydryl  group  (-SH),  we
added an SH group to create 8 more parent scaffolds (Drug Bank). With increasing drug score, the
frequency of PAINLESS compounds increased.

As drugscore increases, probability of a low drug-likeness decreases.  Below is the formula used for
calculating drug score. Drug score incorporates druglikeness.  

Drugscore=(0.5+0.5/(1+exp(cLogP-5)))*(1-0.5/(1+exp(cLogS+5)))*(0.5+0.5/ 

(1+exp(0.012*Molweight-6)))*(1-0.5 (1+exp(Druglikeness)))*if(Mutagenic=="high", 

0.6,if(Mutagenic=="low",0.8,1))*if(Tumorigenic=="high",0.6,if(Tumorigenic=="low", 

0.8,1))*if(ReproductiveEffective=="high",0.6,if(ReproductiveEffective=="low", 

0.8,1))*if(Irritant=="high",0.6,if(Irritant=="low",0.8,1))   (Sander, 2019) 

In the Figure 3, drug score is plotted against druglikeness. The compounds above the red line are
potential  drug  candidates  as  these  compounds  have  the  highest  number  of  druglike  fragments.
Druglike  fragments  are  derived from FDA approved drugs.  The higher  the  frequency of  druglike
fragments the higher the drug score.  

Figure 3 Drugscore vs. Druglikeness

In addition, drug score correlates with a molecule being PAINless, where PAIN stands for Pan Assay 
Interference compounds. PAIN fragments are promiscuous fragments that may bind to many biological



targets. Therefore, when a molecule has PAIN fragments, it may give a false positive result in high-
throughput screens. Compounds with high drug scores do not contain functional groups that were 
PAINful [Figure 4]. This means that the higher the drug score, the more selective the binder a 
compound will be.  

Figure 4. Drug score correlates with PAINLESS

In Figure 5, cumulative distribution of the drug score of molecules that were generated from each of the
seven scaffolds. The drug score is on a scale from 0 to 1.  There was an even distribution of compounds
across  the  drug  scores.  It  is  observed  that  the  scaffold  6  is  has  higher  probability  of  generating
molecules with good drug scores. 



Figure 5. Drug Score by Scaffold

Protein ligand docking with Rosetta 

After a population of molecules is generated using Data Warrior, one needs to identify the best
binders to IRF3 protein. This is accomplished by docking these molecules to protein binding sites and
calculating their binding energy. Docking programs predict the best pose for a ligand with its binding
site on a protein. They can be used to screen out ligands that are not good binders. We used Rosetta
because it is a widely used program for studying protein-ligand docking. The scores it returns are not
actual binding energies but are correlated.  The compounds that bind the target with the lowest energy
are considered the best binders. Docking makes several assumptions. Proteins are treated as rigid or
flexible  only  for  residues  close  to  the  binding  pocket  (Varnek,  2017).   Moreover,  the  binding
predictions of ligands are limited by the number of conformations in 3D space that are sampled by the
program (Varnek, 2017). Furthermore, effect of solvent in the binding process is ignored.  In addition,
the program does not simulate conformational changes in the protein that may result due to ligand
binding.  Other  considerations,  such  as  dissociation  and  protonation  of  protein  residues  due  to
environmental conditions may alter the binding capacities (Varnek, 2017).

Combinatorial Approach.  

After finding the best binders for each scaffold using Rosetta, we took the top binders and
fragmented  them  and  then  recombined  them  to  form  new  molecules.  The  goal  was  to  produce
compounds  with  lower  binding  scores/better  binders/lower  energy  required  for  binding  than  the
original by recombining the best fragments. This produced some compounds with scores for IRF3
pocket 3 as low as -20 (our lowest score). It should be noted that C10 has a Rosetta score of -11.9, and
that  we  almost  doubled  how efficiently  our  compounds  bind  to  the  pocket  responsible  for  IRF3



dimerization. The fragmenting was performed in RDKit using synthesizable fragments called BRICS.
Here were the best binding compounds.

QSAR Models

Docking methods are often combined with ligand-based methods like quantitative structure
activity relationships (QSAR). It is useful to use large molecule databases of ligands to predict the
targets of our compounds. The SVM and ANN models for 88 targets had sensitivity, specificity, and
accuracy  greater  than  90%.  Sensitivity  is  the  ability  to  correctly  identify  positive  test  results.
Specificity is the ability to correctly rule out negative test results. Accuracy is the ability to correctly
identify both true positives and true negatives. These models are quick to create, over a million targets
across many animal species that are available in databases, and no protein structure is needed. Only
ligands are required to build a model. Ligands that bind to a target are considered positive and labeled
a 1. Ligands that do not bind the target are labeled a 0. The models generalize well to 91 percent
accuracy on a set of 243 marketed drugs.  We tested this using the test h5 model function in the toolkit.
Below is a screenshot of what the toolkit looks like. For the QSAR models, it will output a list of
probabilities that a compound binds a target ranked from highest to lowest. We hope to make this
software accessible to the non-technical user, so that it is very easy to perform assays with reasonable
accuracy prior to performing actual experiments. 

Below is a screenshot of how we make our QSAR models using the toolkit.

Figure 8. SAR Model Builder



The toolkit allows you to build 8 models at once. You can then test the pickles or H5 models it 
produces by providing smiles.  

Generating an SVM model to predict targets of IRF3 protein

We used the automatic SAR builder function of the toolkit (see  Figure 8) to build an IRF3
binding predictor. We took the compounds with the most negative binding energy from figure 6 above
and used Data Warrior to generate 100 compounds that were PAINLESS, high drug score, and below -
15 binding energy.  These compounds were labeled with 1’s.  100 random compounds were labeled 0.
The model that worked the best, as tested by the test pickle menu was a SVM that had a penalty of
5,000,000. We then used a set of 350 compounds known to bind IRF3 and 350 compounds that did not
as a test set.  To test the model, you type in the name of the model into the first box and enter the
smiles into the second box. There was 0 percent error on this independent test data set.  The model was
trained based on Rosetta binding energy and tested on known compounds that bind or do not bind to
IRF3.  

The Rosetta Algorithm has a low resolution and a high resolution phase. During low resolution
docking, In low resolution docking, Rosetta picks a random starting position based on xyz coordinates.
Then the ligand is translated, it  moves the ligand up a specified distance in any direction from its
starting point.  Then it rotates the ligand randomly through all rotational degrees of freedom accepting
only those that pass a Lennard Jones attractive/repulsive filter.  Then during slide together, move the
ligand 2 angstroms closer to the protein at  a time until  the protein and ligand collide.   Following
docking there is low resolution/centroid based scoring.  Low resolution sampling involves replacement
of the backbone with peptide fragments three and nine amino acids in length.  It uses the following
measures--  hydrophobicity  term  for  each  amino  acid,  steric  repulsion  between  two  residues,
probability  of  two  residues  interacting,  radius  of  gyration,  solvation  term based  on  a  number  of
surrounding residues, secondary structure terms, 6-12 Lennard Jones potential, Eef1 solvation term,
proline ring closure energy, omega backbone dihedral potential, updated disulfide geometry potential,
potential of phi and psi angles for each amino acid, probability of an amino acid given a set of phi and
psi  angles,  rotamer  likelihood,  combined  covalent  electrostatic  hydrogen bond potentials,  tyrosine
hydroxyl out of plane penalty.  During low resolution sampling, there is a 500 step Monte Carlo search
with a 25% acceptance ratio.  Once the centroid mode is complete, the lowest energy structure from
the low resolution stage is  selected for high resolution refinement.   Using only the lowest energy
ligand protein pair,  all atoms are scored representing side chains in atomic detail.   This comprises
weighted  individual  terms  that  are  summed  to  create  a  total  energy  for  a  protein.   During  high
resolution docking,  side chains  are  rotated  around a bond one side chain  at  a  time (cycling)  and
simultaneous sampling of multiple side chain rotations are combined with small movements of the
ligands  (repacking).   Structures  are  minimized  after  each  cycle  using  Monte  Carlo  sampling  and
Boltzmann probability to accept or reject a new structure.  A final minimizer minimizes the structure of
the protein ligand complex.  During this stage, there are 50 Monte Carlo steps.  If the change in score
is less than +15, then minimize and if accepted output a decoy.  Every 8 cycles do a full repack and
Metropolis check.  The score function uses van der Waals attractive and repulsive terms, solvation
term, explicit hydrogen bonding term, statistical residue-residue pair wise interaction term, internal
side chain conformational energy term and an electrostatic term.  After scoring the complex the ligand
is  moved  1000  angstroms  away  from the  protein  and  then  scored  again.   Interface  score  equals
complex energy minus separated energy.  



Before we talk about the model more, let’s talk about how Rosetta binding works. The Rosetta
algorithm has a low resolution and a high resolution phase. During low resolution docking, In low
resolution docking,  Rosetta  picks a  random starting position based on xyz coordinates.   Then the
ligand is translated, it moves the ligand up a specified distance in any direction from its starting point.
Then it rotates the ligand randomly through all rotational degrees of freedom accepting only those that
pass  a  Lennard  Jones  attractive/repulsive  filter.   Then  during  slide  together,  move  the  ligand  2
angstroms closer to the protein at a time until the protein and ligand collide.  Following docking there
is low resolution/centroid based scoring.  Low resolution resolution sampling involves replacement of
the backbone with peptide fragments three and nine amino acids in length.   It  uses the following
measures--  hydrophobicity  term  for  each  amino  acid,  steric  repulsion  between  two  residues,
probability  of  two  residues  interating,  radius  of  gyration,  solvation  term  based  on  a  number  of
surrounding residues, secondary structure terms, 6-12 lennard jones potential,  Eef1 solvation term,
proline ring closure energy, omega backbone dihedral potential, updated disulfide geometry potential,
potential of phi and psi angles for each amino acid, probability of an amino acid given a set of phi and
psi  angles,  rotamer  likelihood,  combined  covalent  electrostatic  hydrogen bond potentials,  tyrosine
hydroxyl out of plane penalty.  During low resolution sampling, there is a 500 step monte carlo search
with a 25% acceptance ratio.  Once the centroid mode is complete, the lowest energy structure from
the low resolution stage is  selected for high resolution refinement.   Using only the lowest energy
ligand protein pair,  all atoms are scored representing side chains in atomic detail.   This comprises
weighted  individual  terms  that  are  summed  to  create  a  total  energy  for  a  protein.   During  high
resolution docking,  side chains  are  rotated  around a bond one side chain  at  a  time (cycling)  and
simultaneous sampling of multiple side chain rotations are combined with small movements of the
ligands  (repacking).   Structures  are  minimized  after  each  cycle  using  monte  carlo  sampling  and
Boltzman probability to accept or reject a new structure.  A final minimizer minimizes the structure of
the protein ligand complex.  During this stage, there are 50 monte carlo steps.  If the change in score is
less than +15, then minimize and if accepted output a decoy.  Every 8 cycles do a full repack and
Metropolis check.  The score function uses van der waals attractive and repulsive terms, solvation
term, explicit hydrogen bonding term, statistical residue-residue pair wise interaction term, internal
side chain conformational energy term and an electrostatic term.  After scoring the complex the ligand
is  moved  1000  angstroms  away  from the  protein  and  then  scored  again.   Interface  score  equals
complex energy minus separated energy.  

After docking the compounds, we graphed the fraction of compounds vs. Rosetta binding score.



Figure 9. Rosetta Energy Normalized 

 

We created a gridsearch program that loops through the various possible parameters for SVM models.
The grid search varies the gamma and C. Then we plotted accuracy. The figure below shows how test
set results varied with parameters.

Figure 10. Gamma, vs. C, vs. Accuracy for IRF3 



The best model had a loggamma of 1.8, a logC of .5 and an accuracy of 0.86. On an independent
dataset we had the following accuracy, sensitivity, and specificity. We tested this on a new set of 500
IRF3 inhibitors that were not in the training set.  

Figure 11. Accuracy, Sensitivity, and Specificity of IRF3 SVM Models on an Independent Validation
Data Set

Next, I wanted to create a model that would predict whether or not a compound contains druglike
compounds. I went to the enamine database and downloaded druglike fragments and a set of natural
product fragments. We wanted to find the best model for druglikeness using a gridsearch.
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Figure 12. Druglikess SVM Gridsearch

On  an  independent  dataset--  914  low  drug  score  compounds  marked  0  and  914  FDA approved
compounds marked 1.   

Figure 13. Druglikeness on Independent Dataset

We also created an ANN model for druglikeness.
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Figure 14. Artificial Neural Network with the number of neurons and layers varied

On an independent set with 2 layers and 300 neurons we had an accuracy of 74 percent. Next, we
wanted to vary the number of epochs. 236 nodes.  Regularizers=.2.  learning rate=.01. Momentum=.08.
Decay= 1. Nesterov. Batch size 3.



Figure 15. Druglikeness ANN Test Dataset

We tested the ANN on a new set of 500 new IRF3 inhibitors.
 Figure 16. Druglikeness ANN Independent Dataset

To make the toolkit accessible to users without having them install a large number of associated
software programs, the toolkit and Autodock were added to a Virtualbox.  Virtualbox allows you to run
lubuntu on your operating system in a portable application.   It  allows you to save your data in a
workspace that can be shared with others.  It also allows users to share their desktop virtually using the
Chrome Web browser with Chrome Remote Desktop. Additionally, users can share code using google
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colab. Additional packages that have been installed include Java and Spark. We will be publishing
a journal paper illustrating the functionalities of the toolkit. After graduating, I plan to write a research
proposal for a grant to hire students and programmers to keep improving our toolkit and commercialize
it.  


